基于数据统计相关性的近似矩阵乘法
矩阵乘法是科学计算、数据分析和机器学习等领域的核心操作。随着数据规模的不断扩大,精确矩阵乘法的计算成本变得越来越高,促使研究者探索各种近似计算方法以提升效率。在众多近似方法中,基于数据统计相关性的近似矩阵乘法别具特色,它利用数据本身的统计特性来降低计算复杂度,在保持较高精度的同时显著提升计算速度。本文将全面且通俗地介绍这类方法的基本原理、理论基础以及关键算法。
统计相关性的数学建模与深度理论
在深入探讨近似方法之前,我们需要建立数据统计相关性的严格数学表征。对于随机矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,我们可以将其视为从某个概率分布中采样得到的实现。假设 A A A 的列向量 a 1 , a 2 , … , a n a_1, a_2, \ldots, a_n a1,a2,…,an 服从多元联合分布 P ( a 1 , a 2 , … , a n ) \mathcal{P}(a_1, a_2, \ldots, a_n) P(a1,a2,…,an),则相关性可以通过互信息量来衡量:
I ( a i ; a j ) = ∫ ∫ p ( a i , a j ) log p ( a i , a j ) p ( a i ) p ( a j ) d a i d a j I(a_i; a_j) = \int \int p(a_i, a_j) \log \frac{p(a_i, a_j)}{p(a_i)p(a_j)} da_i da_j I(ai;aj)=∫∫p(ai,aj)logp(ai)p(aj)p(ai,aj)daidaj
其中 p ( a i , a j ) p(a_i, a_j) p(ai,aj) 是边缘联合概率密度函数, p ( a i ) p(a_i) p(ai) 和 p ( a j ) p(a_j) p(aj) 是边缘概率密度函数。
对于高维数据,我们可以构建全局相关性结构的层次模型。令 Ψ = { ψ 1 , ψ 2 , … , ψ d } \Psi = \{\psi_1, \psi_2, \ldots, \psi_d\} Ψ={ψ1,ψ2,…,ψd} 表示一组潜在因子,则数据的生成模型可以表示为:
a i = ∑ k = 1 d α i k ψ k + ϵ i a_i = \sum_{k=1}^d \alpha_{ik} \psi_k + \epsilon_i ai=k=1∑dαikψk+ϵi
其中 α i k \alpha_{ik} αik 是加载系数, ϵ i \epsilon_i ϵi 是噪声项。这种模型下,列向量之间的协方差可以分解为:
Σ i j = E [ ( a i − μ i ) ( a j − μ j ) T ] = ∑ k = 1 d α i k α j k E [ ψ k ψ k T ] + δ i j E [ ϵ i ϵ i T ] \Sigma_{ij} = \mathbb{E}[(a_i - \mu_i)(a_j - \mu_j)^T] = \sum_{k=1}^d \alpha_{ik} \alpha_{jk} \mathbb{E}[\psi_k \psi_k^T] + \delta_{ij}\mathbb{E}[\epsilon_i \epsilon_i^T] Σij=E[(ai−μi)(aj−μj)T]=k=1∑dαikαjkE[ψkψkT]+δijE[ϵiϵiT]
其中 δ i j \delta_{ij} δij 是克罗内克函数。这个框架使我们能够从生成模型的角度理解数据相关性,进而设计针对性的近似策略。
更一般地,我们可以通过最大信息系数 (MIC) 来捕获非线性相关性:
MIC ( a i , a j ) = max X , Y I ∗ ( a i , a j ; X , Y ) log ( min ( ∣ X ∣ , ∣ Y ∣ ) ) \text{MIC}(a_i, a_j) = \max_{X,Y} \frac{I^*(a_i, a_j; X, Y)}{\log(\min(|X|, |Y|))} MIC(ai,aj)=X,Ymaxlog(min(∣X∣,∣Y∣))I∗(ai,aj;X,Y)
其中 I ∗ I^* I∗ 是在分辨率 X × Y X \times Y X×Y 下的最大互信息。
基于数据统计相关性的近似矩阵乘法基本思想
传统的矩阵乘法计算 C = A × B C = A \times B C=A×B,其中 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n, B ∈ R n × p B \in \mathbb{R}^{n \times p} B∈Rn×p,需要执行 m × n × p m \times n \times p m×n×p 次乘法操作,时间复杂度为 O ( m n p ) O(mnp) O(mnp)。当矩阵维度较大时,这种计算代价是相当高昂的。基于数据统计相关性的近似方法的核心思想是:现实世界中的数据往往存在内在关联和冗余,我们可以通过挖掘和利用这些统计相关性来降低计算复杂度。
具体而言,现实数据矩阵通常具有以下统计特性:
- 低秩或近似低秩属性:大多数数据矩阵的有效信息可以由少量主成分捕获
- 稀疏性:许多元素为零或接近零
- 聚类结构:数据点或特征往往形成自然分组
- 相关性:列或行之间存在强烈的线性或非线性相关性
从信息论角度,如果矩阵 A A A 和 B B B 包含冗余信息,则存在压缩映射 f f f 和 g g g,使得信息损失极小:
H ( A B ) ≈ H ( f ( A ) g ( B ) ) H(AB) \approx H(f(A)g(B)) H(AB)≈H(f(A)g(B))
其中 H ( ⋅ ) H(\cdot) H(⋅) 表示信息熵,且 dim ( f ( A ) ) ≪ dim ( A ) \text{dim}(f(A)) \ll \text{dim}(A) dim(f(A))≪dim(A), dim ( g ( B ) ) ≪ dim ( B ) \text{dim}(g(B)) \ll \text{dim}(B) dim(g(B))≪dim(B)。
基于数据统计相关性的近似矩阵乘法正是利用上述特性,通过识别数据中的模式和结构,构建更高效的计算路径,从而在保持可接受精度的前提下显著减少计算量。
基于统计采样的近似矩阵乘法
统计采样与相关性感知
最基本的基于统计采样的近似方法是在考虑数据相关性的情况下进行采样。与简单随机采样不同,这类方法根据数据的统计分布特性设计采样策略,使得采样能更好地捕获原始数据的特征。
考虑矩阵乘积 C = A B C = AB C=AB,其元素 C i j = ∑ k = 1 n A i k B k j C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} Cij=∑k=1nAikBkj。传统的蒙特卡洛采样方法使用均匀分布来采样索引 k k k,而相关性感知采样则根据 A A A 和 B B B 的统计特性来设计更优的采样分布。
设计这种采样分布的关键是最小化近似误差的方差。对于估计量 C ~ i j \tilde{C}_{ij} C~ij,其方差为:
Var ( C ~ i j ) = 1 s 2 ∑ k = 1 s Var ( A i k B k j p k ) = 1 s 2 ∑ k = 1 s ( A i k B k j ) 2 p k 2 ⋅ p k ( 1 − p k ) \text{Var}(\tilde{C}_{ij}) = \frac{1}{s^2} \sum_{k=1}^{s} \text{Var}\left(\frac{A_{ik} B_{kj}}{p_k}\right) = \frac{1}{s^2} \sum_{k=1}^{s} \frac{(A_{ik} B_{kj})^2}{p_k^2} \cdot p_k (1-p_k) Var(C~ij)=s21k=1∑sVar(pkAikBkj)=s21k=1∑spk2(AikBkj)2⋅pk(1−pk)
其中 p k p_k pk 是选择索引 k k k 的概率, s s s 是采样次数。
理论分析表明,最优采样分布应选择:
p k = ∣ A i k B k j ∣ ∑ l = 1 n ∣ A i l B l j ∣ p_k = \frac{|A_{ik} B_{kj}|}{\sum_{l=1}^{n} |A_{il} B_{lj}|} pk=∑l=1n∣AilBlj∣∣AikBkj∣
然而,这个分布依赖于我们要计算的 A i k B k j A_{ik} B_{kj} AikBkj 值,实际无法预先获得。因此,实用的相关性感知采样方法通常使用数据统计特性的近似替代。例如:
p k = ∥ A : , k ∥ ⋅ ∥ B k , : ∥ ∑ l = 1 n ∥ A : , l ∥ ⋅ ∥ B l , : ∥ p_k = \frac{\|A_{:,k}\| \cdot \|B_{k,:}\|}{\sum_{l=1}^{n} \|A_{:,l}\| \cdot \|B_{l,:}\|} pk=∑l=1n∥A:,l∥⋅∥Bl,:∥∥A:,k∥⋅∥Bk,:∥
其中 ∥ A : , k ∥ \|A_{:,k}\| ∥A:,k∥ 表示 A A A 的第 k k k 列的范数, ∥ B k , : ∥ \|B_{k,:}\| ∥Bk,:∥ 表示 B B B 的第 k k k 行的范数。这种方法考虑了列和行的相对重要性,比均匀采样更能捕获数据的统计结构。
从理论上讲,当 A A A 和 B B B 的列/行范数分布高度不均匀时,这种策略的方差减少比为:
Var uniform ( C ~ ) Var optimal ( C ~ ) = n ∑ k = 1 n ∣ A i k B k j ∣ 2 ( ∑ k = 1 n ∣ A i k B k j ∣ ) 2 ≤ n ∑ k = 1 n ∥ A : , k ∥ 2 ∥ B k , : ∥ 2 ( ∑ k = 1 n ∥ A : , k ∥ ∥ B k , : ∥ ) 2 \frac{\text{Var}_{\text{uniform}}(\tilde{C})}{\text{Var}_{\text{optimal}}(\tilde{C})} = \frac{n \sum_{k=1}^{n} |A_{ik} B_{kj}|^2}{\left(\sum_{k=1}^{n} |A_{ik} B_{kj}|\right)^2} \leq \frac{n \sum_{k=1}^{n} \|A_{:,k}\|^2 \|B_{k,:}\|^2}{\left(\sum_{k=1}^{n} \|A_{:,k}\| \|B_{k,:}\|\right)^2} Varoptimal(C~)Varuniform(C~)=(∑k=1n∣AikBkj∣)2n∑k=1n∣AikBkj∣2≤(∑k=1n∥A:,k∥∥Bk,:∥)2n∑k=1n∥A:,k∥2∥Bk,:∥2
这个比值可以达到 O ( n ) O(n) O(n),表明相关性感知采样可以比均匀采样高效得多。
自适应重要性采样
进一步的改进是自适应重要性采样,它在计算过程中动态调整采样分布,以捕获数据的局部相关性。该方法首先进行初始采样计算部分结果,然后基于这些结果更新采样分布,使采样更倾向于对最终结果有较大贡献的元素。
自适应采样过程可以表述为:
- 初始化:根据先验信息设置初始采样分布 p ( 0 ) p^{(0)} p(0)
- 迭代过程:在第
t
t
t 次迭代中
- 使用当前分布 p ( t ) p^{(t)} p(t) 进行采样,计算估计 C ~ ( t ) \tilde{C}^{(t)} C~(t)
- 根据 C ~ ( t ) \tilde{C}^{(t)} C~(t) 和已有信息更新分布为 p ( t + 1 ) p^{(t+1)} p(t+1)
更新规则可以设计为:
p k ( t + 1 ) = ( 1 − α ) ⋅ p k ( t ) + α ⋅ ∣ R i k ( t ) ∣ ⋅ ∣ C k j ( t ) ∣ ∑ l = 1 n ∣ R i l ( t ) ∣ ⋅ ∣ C l j ( t ) ∣ p_k^{(t+1)} = (1-\alpha) \cdot p_k^{(t)} + \alpha \cdot \frac{|R_{ik}^{(t)}| \cdot |C_{kj}^{(t)}|}{\sum_{l=1}^{n} |R_{il}^{(t)}| \cdot |C_{lj}^{(t)}|} pk(t+1)=(1−α)⋅pk(t)+α⋅∑l=1n∣Ril(t)∣⋅∣Clj(t)∣∣Rik(t)∣⋅∣Ckj(t)∣
其中 R ( t ) = A − A ~ ( t ) R^{(t)} = A - \tilde{A}^{(t)} R(t)=A−A~(t) 和 C ( t ) = B − B ~ ( t ) C^{(t)} = B - \tilde{B}^{(t)} C(t)=B−B~(t) 分别是当前近似的残差, α \alpha α 是学习率参数。
自适应重要性采样的理论收敛性可以通过超鞅(supermartingale)理论分析。对于合适的学习率序列 { α t } \{\alpha_t\} {αt},可以证明估计序列 { C ~ ( t ) } \{\tilde{C}^{(t)}\} {C~(t)} 几乎必然收敛,且收敛速率为 O ( t − 1 / 2 ) O(t^{-1/2}) O(t−1/2)。更精确地,对于 δ ∈ ( 0 , 1 ) \delta \in (0, 1) δ∈(0,1),存在常数 K K K,使得以概率至少 1 − δ 1-\delta 1−δ:
∥ C ~ ( t ) − C ∥ F ≤ K log ( 1 / δ ) t \|\tilde{C}^{(t)} - C\|_F \leq K \sqrt{\frac{\log(1/\delta)}{t}} ∥C~(t)−C∥F≤Ktlog(1/δ)
这一结果显示了自适应采样的强大理论保证。
多级分层采样策略
对于具有复杂相关结构的数据,单一采样策略可能不足以捕获所有相关模式。多级分层采样策略通过层次化的方法来处理不同尺度的相关性。
具体而言,我们可以将采样过程分为多个层次:
- 全局层次:根据整体相关性结构确定大致采样区域
- 中观层次:在选定区域内,根据局部相关性进一步细化采样
- 微观层次:在精细区域内进行精确采样
形式上,第 l l l 层的采样概率可以表示为:
p k ( l ) = ϕ ( l ) ( A : , k , B k , : ) ∑ j ϕ ( l ) ( A : , j , B j , : ) p^{(l)}_k = \frac{\phi^{(l)}(A_{:,k}, B_{k,:})}{\sum_{j} \phi^{(l)}(A_{:,j}, B_{j,:})} pk(l)=∑jϕ(l)(A:,j,Bj,:)ϕ(l)(A:,k,Bk,:)
其中 ϕ ( l ) \phi^{(l)} ϕ(l) 是第 l l l 层的相关性度量函数,可以根据数据的特定结构定制。
分层采样的总体估计为各层估计的加权组合:
C ~ = ∑ l = 1 L w l C ~ ( l ) \tilde{C} = \sum_{l=1}^{L} w_l \tilde{C}^{(l)} C~=l=1∑LwlC~(l)
其中权重 w l w_l wl 可以通过最小化估计方差来优化:
w l = Cov − 1 ( C ~ ( l ) , C ) ∑ j = 1 L Cov − 1 ( C ~ ( j ) , C ) w_l = \frac{\text{Cov}^{-1}(\tilde{C}^{(l)}, C)}{\sum_{j=1}^{L} \text{Cov}^{-1}(\tilde{C}^{(j)}, C)} wl=∑j=1LCov−1(C~(j),C)Cov−1(C~(l),C)
这种分层策略特别适合具有多尺度相关性的数据,如自然图像、社交网络和金融时间序列。
基于统计相关性的低秩近似方法
相关性驱动的矩阵分解
低秩近似是矩阵计算中的常用技术,传统方法如奇异值分解(SVD)通常基于数学框架而非数据特性。基于统计相关性的低秩近似则更加关注数据的内在统计结构,设计适应特定数据分布的分解策略。
对于矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,相关性驱动的低秩近似试图找到分解 A ≈ U V T A \approx UV^T A≈UVT,其中 U ∈ R m × k U \in \mathbb{R}^{m \times k} U∈Rm×k, V ∈ R n × k V \in \mathbb{R}^{n \times k} V∈Rn×k,且 k ≪ min ( m , n ) k \ll \min(m,n) k≪min(m,n)。不同于传统SVD的是,这种分解会考虑数据的相关性结构,例如行或列之间的相关性模式。
一个典型的方法是使用统计相关矩阵来指导分解过程。例如,可以计算列相关矩阵 Σ c = 1 m A T A \Sigma_c = \frac{1}{m} A^T A Σc=m1ATA,然后进行分解:
Σ c ≈ V Λ V T \Sigma_c \approx V \Lambda V^T Σc≈VΛVT
其中 Λ \Lambda Λ 是对角矩阵,包含最大的 k k k 个特征值, V V V 是对应的特征向量。接着,可以计算 U = A V Λ − 1 / 2 U = AV\Lambda^{-1/2} U=AVΛ−1/2,得到最终分解 A ≈ U V T A \approx UV^T A≈UVT。
更一般地,我们可以通过优化带有正则化项的目标函数来获得相关性感知的低秩近似:
min U , V ∥ A − U V T ∥ F 2 + λ 1 Ω 1 ( U ) + λ 2 Ω 2 ( V ) \min_{U,V} \|A - UV^T\|_F^2 + \lambda_1 \Omega_1(U) + \lambda_2 \Omega_2(V) U,Vmin∥A−UVT∥F2+λ1Ω1(U)+λ2Ω2(V)
其中 Ω 1 \Omega_1 Ω1 和 Ω 2 \Omega_2 Ω2 是根据数据相关性结构设计的正则化函数, λ 1 \lambda_1 λ1 和 λ 2 \lambda_2 λ2 是权衡参数。例如,对于具有组结构的数据,可以使用组稀疏正则化:
Ω 1 ( U ) = ∑ g ∈ G ∥ U g , : ∥ F \Omega_1(U) = \sum_{g \in \mathcal{G}} \|U_{g,:}\|_F Ω1(U)=g∈G∑∥Ug,:∥F
其中 G \mathcal{G} G 是预定义的组索引集合, U g , : U_{g,:} Ug,: 表示 U U U 中对应组 g g g 的行。
在理论上,这种正则化方法的收敛性和统计一致性可以通过复杂的非凸优化理论和高维统计分析来证明。对于满足限制强凸性(Restricted Strong Convexity,RSC)条件的问题,可以证明优化误差以几何速率收敛:
∥ U ( t ) V ( t ) T − U V T ∥ F 2 ≤ ( 1 − γ ) t ∥ U ( 0 ) V ( 0 ) T − U V T ∥ F 2 \|U^{(t)}V^{(t)T} - UV^T\|_F^2 \leq (1-\gamma)^t \|U^{(0)}V^{(0)T} - UV^T\|_F^2 ∥U(t)V(t)T−UVT∥F2≤(1−γ)t∥U(0)V(0)T−UVT∥F2
其中 γ \gamma γ 是与问题条件数相关的常数, U ( t ) U^{(t)} U(t) 和 V ( t ) V^{(t)} V(t) 是第 t t t 次迭代的解。
CUR分解与统计杠杆采样
CUR分解是另一种关注数据统计特性的低秩近似方法,它直接选择 A A A 的列和行子集来构建近似。具体而言,CUR分解将矩阵 A A A 表示为:
A ≈ C U R A \approx CUR A≈CUR
其中 C C C 由 A A A 的部分列构成, R R R 由 A A A 的部分行构成, U U U 是一个小矩阵,用于调整 C C C 和 R R R 的交互。
CUR分解的关键是如何选择最具代表性的列和行。统计杠杆采样方法提供了一种基于数据相关性的选择策略。对于列选择,统计杠杆分数定义为:
ℓ j = ∥ V j , : ∥ 2 \ell_j = \|V_{j,:}\|^2 ℓj=∥Vj,:∥2
其中 V V V 是 A A A 的右奇异向量矩阵。直观上,杠杆分数衡量了每一列对矩阵结构的影响力。
基于杠杆分数的采样概率设计为:
p j = ( 1 − β ) ⋅ ℓ j ∑ i = 1 n ℓ i + β ⋅ 1 n p_j = (1-\beta) \cdot \frac{\ell_j}{\sum_{i=1}^{n} \ell_i} + \beta \cdot \frac{1}{n} pj=(1−β)⋅∑i=1nℓiℓj+β⋅n1
其中 β \beta β 是一个小常数,用于确保每列都有非零的采样概率。
从理论上讲,当选择 c c c 列和 r r r 行,且 c , r ≥ k ϵ − 2 log k c, r \geq k\epsilon^{-2}\log k c,r≥kϵ−2logk(其中 k k k 是目标秩, ϵ \epsilon ϵ 是误差容忍度)时,以高概率有:
∥ A − C U R ∥ F ≤ ( 2 + ϵ ) ∥ A − A k ∥ F \|A - CUR\|_F \leq (2 + \epsilon) \|A - A_k\|_F ∥A−CUR∥F≤(2+ϵ)∥A−Ak∥F
其中 A k A_k Ak 是 A A A 的最佳秩 k k k 近似。这表明CUR分解可以接近最优低秩近似的精度,同时保持解释性和计算效率。
更复杂的理论分析表明,对于具有快速奇异值衰减( σ i ( A ) ≤ i − α \sigma_i(A) \leq i^{-\alpha} σi(A)≤i−α, α > 1 / 2 \alpha > 1/2 α>1/2)的矩阵,CUR分解的相对误差可以进一步改进:
∥ A − C U R ∥ F ∥ A ∥ F ≤ O ( ( k c ) α − 1 / 2 + ( k r ) α − 1 / 2 ) \frac{\|A - CUR\|_F}{\|A\|_F} \leq O\left(\left(\frac{k}{c}\right)^{\alpha-1/2} + \left(\frac{k}{r}\right)^{\alpha-1/2}\right) ∥A∥F∥A−CUR∥F≤O((ck)α−1/2+(rk)α−1/2)
这表明,当数据具有强相关性(大 α \alpha α 值)时,CUR分解可以以较少的列和行实现高精度近似。
核范数最小化与统计学习理论
对于具有复杂相关性结构的数据,可以通过核范数最小化来获得更精确的低秩近似。核范数 ∥ A ∥ ∗ \|A\|_* ∥A∥∗(矩阵奇异值之和)是秩的凸松弛,通过求解凸优化问题:
min X ∥ X ∥ ∗ s.t. ∥ A − X ∥ F ≤ ϵ \min_{X} \|X\|_* \quad \text{s.t.} \quad \|A - X\|_F \leq \epsilon Xmin∥X∥∗s.t.∥A−X∥F≤ϵ
可以得到近似低秩矩阵 X X X。
从统计学习理论角度,这个问题可以视为带有结构化惩罚的回归问题。假设观测矩阵为 Y = A + E Y = A + E Y=A+E,其中 E E E 是噪声矩阵,则最优估计可以通过:
A ^ = arg min X ∥ Y − X ∥ F 2 + λ ∥ X ∥ ∗ \hat{A} = \arg\min_{X} \|Y - X\|_F^2 + \lambda \|X\|_* A^=argXmin∥Y−X∥F2+λ∥X∥∗
来获得。对于子高斯噪声,最优的正则化参数为 λ = C σ max ( m , n ) m n \lambda = C\sigma\sqrt{\frac{\max(m,n)}{mn}} λ=Cσmnmax(m,n),其中 σ \sigma σ 是噪声标准差, C C C 是常数。在这种设置下,估计误差满足:
∥ A ^ − A ∥ F 2 ≤ C ′ σ 2 ⋅ rank ( A ) ⋅ max ( m , n ) m n \|\hat{A} - A\|_F^2 \leq C'\sigma^2 \cdot \text{rank}(A) \cdot \frac{\max(m,n)}{mn} ∥A^−A∥F2≤C′σ2⋅rank(A)⋅mnmax(m,n)
这一结果表明,当数据具有低秩结构时,核范数最小化可以有效抵抗噪声干扰,获得高质量的低秩近似。
基于聚类的相关性近似方法
基于相关性结构的矩阵分块
现实数据通常表现出明显的聚类结构,即某些行或列之间具有较高的相似性。基于这一观察,我们可以利用聚类算法将矩阵分解为多个子块,然后针对性地进行计算。
考虑矩阵乘法 C = A B C = AB C=AB,假设 A A A 的列和 B B B 的行可以根据相关性分别聚类为 m A m_A mA 和 m B m_B mB 个组。我们可以将原始问题分解为 m A × m B m_A \times m_B mA×mB 个子问题:
C ≈ ∑ i = 1 m A ∑ j = 1 m B A : , I i B J j , : C \approx \sum_{i=1}^{m_A} \sum_{j=1}^{m_B} A_{:,\mathcal{I}_i} B_{\mathcal{J}_j,:} C≈i=1∑mAj=1∑mBA:,IiBJj,:
其中 I i \mathcal{I}_i Ii 表示 A A A 列的第 i i i 个聚类的索引集合, J j \mathcal{J}_j Jj 表示 B B B 行的第 j j j 个聚类的索引集合。
从理论上讲,这种分块策略的最优性可以通过信息瓶颈理论(Information Bottleneck Theory)来分析。定义互信息 I ( A ; C ) I(A;C) I(A;C) 和 I ( B ; C ) I(B;C) I(B;C) 分别表示 A A A 与 C C C 以及 B B B 与 C C C 之间的信息量,则最优聚类应最大化:
L = I ( A clustered ; C ) + I ( B clustered ; C ) − β ⋅ complexity ( A clustered , B clustered ) \mathcal{L} = I(A_{\text{clustered}};C) + I(B_{\text{clustered}};C) - \beta \cdot \text{complexity}(A_{\text{clustered}}, B_{\text{clustered}}) L=I(Aclustered;C)+I(Bclustered;C)−β⋅complexity(Aclustered,Bclustered)
其中 β \beta β 是权衡参数, complexity ( ⋅ ) \text{complexity}(\cdot) complexity(⋅) 衡量聚类表示的复杂度。
在高斯假设下,这个问题可以通过迭代优化算法求解,其收敛性和全局最优性可以通过凸松弛和半定规划理论证明。
更精细的理论分析表明,当数据具有块对角相关结构,即相关矩阵可以近似为:
Σ
A
≈
diag
(
Σ
A
,
1
,
Σ
A
,
2
,
…
,
Σ
A
,
m
A
)
\Sigma_A \approx \text{diag}(\Sigma_{A,1}, \Sigma_{A,2}, \ldots, \Sigma_{A,m_A})
ΣA≈diag(ΣA,1,ΣA,2,…,ΣA,mA)
Σ
B
≈
diag
(
Σ
B
,
1
,
Σ
B
,
2
,
…
,
Σ
B
,
m
B
)
\Sigma_B \approx \text{diag}(\Sigma_{B,1}, \Sigma_{B,2}, \ldots, \Sigma_{B,m_B})
ΣB≈diag(ΣB,1,ΣB,2,…,ΣB,mB)
时,基于聚类的近似方法可以达到接近最优的精度。具体而言,如果块间相关性满足 ∥ Σ A , i , j ∥ 2 ≤ ϵ A \|\Sigma_{A,i,j}\|_2 \leq \epsilon_A ∥ΣA,i,j∥2≤ϵA 且 ∥ Σ B , i , j ∥ 2 ≤ ϵ B \|\Sigma_{B,i,j}\|_2 \leq \epsilon_B ∥ΣB,i,j∥2≤ϵB,则近似误差满足:
∥ C − C ~ ∥ F ≤ ( ϵ A ∥ B ∥ F + ϵ B ∥ A ∥ F + ϵ A ϵ B ) \|C - \tilde{C}\|_F \leq (\epsilon_A \|B\|_F + \epsilon_B \|A\|_F + \epsilon_A \epsilon_B) ∥C−C~∥F≤(ϵA∥B∥F+ϵB∥A∥F+ϵAϵB)
这表明,当数据具有明显的聚类结构时,基于聚类的近似方法可以实现高精度。
基于聚类的相关性压缩
聚类不仅可以用于问题分解,还可以直接用于数据压缩。对于高度相关的数据,我们可以用聚类中心替代原始数据点,从而大幅减少计算量。
具体而言,假设 A A A 的列已被聚类为 m A m_A mA 个组,每组用一个代表向量 A ^ : , i \hat{A}_{:,i} A^:,i 表示,通常选择为聚类中心。类似地, B B B 的行也被聚类为 m B m_B mB 个组,每组用 B ^ i , : \hat{B}_{i,:} B^i,: 表示。则矩阵乘法可以近似为:
C i j ≈ ∑ k = 1 n A i k B k j ≈ ∑ p = 1 m A ∑ q = 1 m B ∣ I p ∣ ⋅ ∣ J q ∣ ⋅ A ^ i , p ⋅ B ^ q , j C_{ij} \approx \sum_{k=1}^{n} A_{ik} B_{kj} \approx \sum_{p=1}^{m_A} \sum_{q=1}^{m_B} |\mathcal{I}_p| \cdot |\mathcal{J}_q| \cdot \hat{A}_{i,p} \cdot \hat{B}_{q,j} Cij≈k=1∑nAikBkj≈p=1∑mAq=1∑mB∣Ip∣⋅∣Jq∣⋅A^i,p⋅B^q,j
其中 ∣ I p ∣ |\mathcal{I}_p| ∣Ip∣ 和 ∣ J q ∣ |\mathcal{J}_q| ∣Jq∣ 分别是聚类 p p p 和 q q q 的大小。
从率失真理论(Rate-Distortion Theory)角度,这种压缩方法的最优性可以通过下述界限刻画:对于给定的压缩率 R = log 2 ( m A ⋅ m B ) R = \log_2(m_A \cdot m_B) R=log2(mA⋅mB),最小可能的失真度 D D D 满足:
D ≥ 2 − 2 R / d eff D \geq 2^{-2R/d_{\text{eff}}} D≥2−2R/deff
其中 d eff d_{\text{eff}} deff 是数据的有效维度,与相关性结构密切相关。对于高度相关的数据, d eff ≪ n d_{\text{eff}} \ll n deff≪n,因此即使在低压缩率下也能实现低失真。
更精确的理论分析表明,在合适的条件下,基于聚类的压缩可以实现近似最优的率失真权衡。例如,当数据符合混合高斯模型时,压缩误差可以近似为:
∥ C − C ~ ∥ F 2 ≤ ∑ i = 1 m A ∑ j ∈ I i ∥ A : , j − A ^ : , i ∥ 2 ∥ B ∥ F 2 + ∥ A ∥ F 2 ∑ i = 1 m B ∑ j ∈ J i ∥ B j , : − B ^ i , : ∥ 2 + ϵ cross \|C - \tilde{C}\|_F^2 \leq \sum_{i=1}^{m_A} \sum_{j \in \mathcal{I}_i} \|A_{:,j} - \hat{A}_{:,i}\|^2 \|B\|_F^2 + \|A\|_F^2 \sum_{i=1}^{m_B} \sum_{j \in \mathcal{J}_i} \|B_{j,:} - \hat{B}_{i,:}\|^2 + \epsilon_{\text{cross}} ∥C−C~∥F2≤i=1∑mAj∈Ii∑∥A:,j−A^:,i∥2∥B∥F2+∥A∥F2i=1∑mBj∈Ji∑∥Bj,:−B^i,:∥2+ϵcross
其中 ϵ cross \epsilon_{\text{cross}} ϵcross 是交叉项误差,通常较小。
基于协方差结构的近似方法
协方差引导的矩阵乘法
现实数据通常表现出强烈的协方差结构,即变量之间存在系统性的相关模式。基于协方差结构的近似方法利用这一特性来指导计算过程。
对于矩阵乘法 C = A B C = AB C=AB,我们可以考虑 A A A 的列和 B B B 的行之间的协方差关系。假设我们已经估计了协方差矩阵 Σ A B \Sigma_{AB} ΣAB,其中 ( Σ A B ) i j (\Sigma_{AB})_{ij} (ΣAB)ij 表示 A A A 的第 i i i 列与 B B B 的第 j j j 行之间的协方差。
我们可以将 Σ A B \Sigma_{AB} ΣAB 进行谱分解:
Σ A B = U Λ U T = ∑ i = 1 r λ i u i u i T \Sigma_{AB} = U \Lambda U^T = \sum_{i=1}^{r} \lambda_i u_i u_i^T ΣAB=UΛUT=i=1∑rλiuiuiT
其中 λ 1 ≥ λ 2 ≥ ⋯ ≥ λ r > 0 \lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_r > 0 λ1≥λ2≥⋯≥λr>0 是特征值, u 1 , u 2 , … , u r u_1, u_2, \ldots, u_r u1,u2,…,ur 是对应的特征向量。
基于这一分解,我们可以构建优化的计算顺序,优先计算贡献较大的项:
C = A B = ∑ i = 1 n A : , i B i , : ≈ ∑ k = 1 r ′ ∑ i , j : ( i , j ) ∈ S k A : , i B j , : C = AB = \sum_{i=1}^{n} A_{:,i} B_{i,:} \approx \sum_{k=1}^{r'} \sum_{i,j: (i,j) \in \mathcal{S}_k} A_{:,i} B_{j,:} C=AB=i=1∑nA:,iBi,:≈k=1∑r′i,j:(i,j)∈Sk∑A:,iBj,:
其中 S k = { ( i , j ) : u k ( i ) ⋅ u k ( j ) > τ k } \mathcal{S}_k = \{(i,j): u_k(i) \cdot u_k(j) > \tau_k\} Sk={(i,j):uk(i)⋅uk(j)>τk} 是与第 k k k 个特征向量相关的索引集合, τ k \tau_k τk 是阈值, r ′ ≤ r r' \leq r r′≤r 是选择的特征向量数量。
这种方法的理论近似误差可以通过矩阵扰动理论分析。具体而言,如果仅使用前 r ′ r' r′ 个特征向量,且对应的特征值满足 ∑ i = r ′ + 1 r λ i ≤ ϵ \sum_{i=r'+1}^{r} \lambda_i \leq \epsilon ∑i=r′+1rλi≤ϵ,则近似误差满足:
∥ C − C ~ ∥ F ≤ ϵ ⋅ ∥ A ∥ F ⋅ ∥ B ∥ F \|C - \tilde{C}\|_F \leq \sqrt{\epsilon} \cdot \|A\|_F \cdot \|B\|_F ∥C−C~∥F≤ϵ⋅∥A∥F⋅∥B∥F
这表明,当协方差矩阵的特征值快速衰减时,基于协方差结构的近似方法可以实现高精度。
主成分引导的近似乘法
主成分分析(PCA)是提取数据主要变异方向的强大工具。基于主成分的近似方法首先识别数据的主要变异模式,然后在这些模式上进行计算,忽略次要变异方向。
对于矩阵 A A A 和 B B B,我们可以分别进行主成分分析,得到:
A ≈ U A S A V A T , B ≈ U B S B V B T A \approx U_A S_A V_A^T, \quad B \approx U_B S_B V_B^T A≈UASAVAT,B≈UBSBVBT
其中 U A U_A UA, U B U_B UB 包含主成分方向, S A S_A SA, S B S_B SB 是对角矩阵,包含主成分的标准差。
基于主成分的近似乘法可以表述为:
C ≈ U A S A ( V A T V B ) S B U B T C \approx U_A S_A (V_A^T V_B) S_B U_B^T C≈UASA(VATVB)SBUBT
关键在于计算 V A T V B V_A^T V_B VATVB,这是一个较小的矩阵,代表了 A A A 的主成分与 B B B 的主成分之间的相关性。
对于高维数据,通常存在复杂的主成分结构,包括稀疏主成分、稠密主成分和噪声成分的混合。针对这种情况,可以设计更复杂的分解策略:
A
≈
U
A
(
s
)
S
A
(
s
)
V
A
(
s
)
T
+
U
A
(
d
)
S
A
(
d
)
V
A
(
d
)
T
+
E
A
A \approx U_A^{(s)} S_A^{(s)} V_A^{(s)T} + U_A^{(d)} S_A^{(d)} V_A^{(d)T} + E_A
A≈UA(s)SA(s)VA(s)T+UA(d)SA(d)VA(d)T+EA
B
≈
U
B
(
s
)
S
B
(
s
)
V
B
(
s
)
T
+
U
B
(
d
)
S
B
(
d
)
V
B
(
d
)
T
+
E
B
B \approx U_B^{(s)} S_B^{(s)} V_B^{(s)T} + U_B^{(d)} S_B^{(d)} V_B^{(d)T} + E_B
B≈UB(s)SB(s)VB(s)T+UB(d)SB(d)VB(d)T+EB
其中上标 ( s ) (s) (s) 和 ( d ) (d) (d) 分别表示稀疏和稠密成分, E A E_A EA 和 E B E_B EB 是噪声项。
相应的近似乘法可以分解为多个组件:
C ≈ C ( s s ) + C ( s d ) + C ( d s ) + C ( d d ) C \approx C^{(ss)} + C^{(sd)} + C^{(ds)} + C^{(dd)} C≈C(ss)+C(sd)+C(ds)+C(dd)
其中每个组件使用不同的计算策略,例如:
- C ( s s ) C^{(ss)} C(ss):利用稀疏结构的快速算法
- C ( d d ) C^{(dd)} C(dd):利用低秩特性的近似算法
- C ( s d ) C^{(sd)} C(sd) 和 C ( d s ) C^{(ds)} C(ds):结合稀疏和低秩特性的混合算法
从统计学习理论角度,这种分解的最优性可以通过Minimax理论分析。具体而言,对于符合混合模型的数据,最优分解满足:
E ∥ C − C ~ ∥ F 2 ≤ inf C ^ sup P ∈ P E P ∥ C − C ^ ∥ F 2 + o ( 1 ) \mathbb{E}\|C - \tilde{C}\|_F^2 \leq \inf_{\hat{C}} \sup_{P \in \mathcal{P}} \mathbb{E}_P \|C - \hat{C}\|_F^2 + o(1) E∥C−C~∥F2≤C^infP∈PsupEP∥C−C^∥F2+o(1)
其中 P \mathcal{P} P 是可能的数据分布族, C ^ \hat{C} C^ 是任意估计器。
基于稀疏和低秩相关性的混合方法
稀疏加低秩分解
现实数据通常同时具有稀疏和低秩特性。稀疏成分捕获了数据中的局部特征,而低秩成分捕获了全局模式。基于这一观察,稀疏加低秩(S+L)分解提供了一种强大的数据表示方式:
A = S + L A = S + L A=S+L
其中 S S S 是稀疏矩阵, L L L 是低秩矩阵。
这种分解可以通过求解以下优化问题获得:
min S , L ∥ S ∥ 1 + λ ∥ L ∥ ∗ s.t. A = S + L \min_{S,L} \|S\|_1 + \lambda \|L\|_* \quad \text{s.t.} \quad A = S + L S,Lmin∥S∥1+λ∥L∥∗s.t.A=S+L
其中 ∥ S ∥ 1 \|S\|_1 ∥S∥1 是 S S S 的 l 1 l_1 l1 范数,促进稀疏性; ∥ L ∥ ∗ \|L\|_* ∥L∥∗ 是 L L L 的核范数(奇异值之和),促进低秩性; λ \lambda λ 是权衡参数。
从统计学习理论角度,这种分解的一致性和收敛性已得到严格证明。具体而言,当稀疏度和秩满足 ∥ S ∥ 0 ≤ ρ s m n \|S\|_0 \leq \rho_{s} mn ∥S∥0≤ρsmn 和 rank ( L ) ≤ ρ r min ( m , n ) \text{rank}(L) \leq \rho_{r} \min(m,n) rank(L)≤ρrmin(m,n),且 ρ s + ρ r < c \rho_{s} + \rho_{r} < c ρs+ρr<c( c c c 是常数)时,优化问题的解 ( S ^ , L ^ ) (\hat{S}, \hat{L}) (S^,L^) 以高概率恢复真实分解 ( S , L ) (S, L) (S,L):
∥ S − S ^ ∥ F + ∥ L − L ^ ∥ F ≤ ϵ \|S - \hat{S}\|_F + \|L - \hat{L}\|_F \leq \epsilon ∥S−S^∥F+∥L−L^∥F≤ϵ
其中 ϵ \epsilon ϵ 取决于问题的维度和条件数。
基于S+L分解的矩阵乘法近似可以表述为:
C = A B = ( S A + L A ) ( S B + L B ) = S A S B + S A L B + L A S B + L A L B C = AB = (S_A + L_A)(S_B + L_B) = S_A S_B + S_A L_B + L_A S_B + L_A L_B C=AB=(SA+LA)(SB+LB)=SASB+SALB+LASB+LALB
其中不同项可以采用不同的计算策略:
- S A S B S_A S_B SASB:利用稀疏矩阵乘法算法
- S A L B S_A L_B SALB 和 L A S B L_A S_B LASB:结合稀疏和低秩特性的混合算法
- L A L B L_A L_B LALB:基于低秩近似的算法
对于具有结构化稀疏性的矩阵,我们可以进一步改进S+L分解。定义结构化稀疏范数:
∥ S ∥ struct = ∑ g ∈ G w g ∥ S g ∥ F \|S\|_{\text{struct}} = \sum_{g \in \mathcal{G}} w_g \|S_g\|_F ∥S∥struct=g∈G∑wg∥Sg∥F
其中 G \mathcal{G} G 是预定义的组索引集合, w g w_g wg 是组权重。相应的优化问题变为:
min S , L ∥ S ∥ struct + λ ∥ L ∥ ∗ s.t. A = S + L \min_{S,L} \|S\|_{\text{struct}} + \lambda \|L\|_* \quad \text{s.t.} \quad A = S + L S,Lmin∥S∥struct+λ∥L∥∗s.t.A=S+L
这种结构化分解可以更好地捕获数据中的复杂模式,进一步提高近似精度。
块稀疏和块低秩结构
除了元素级的稀疏和低秩特性外,现实数据通常表现出块结构,即矩阵的某些子块表现为稀疏或低秩。这种结构可以通过块稀疏和块低秩模型捕获:
A = ∑ i = 1 m A ∑ j = 1 n A A i j ⋅ E i j A = \sum_{i=1}^{m_A} \sum_{j=1}^{n_A} A_{ij} \cdot E_{ij} A=i=1∑mAj=1∑nAAij⋅Eij
其中 E i j E_{ij} Eij 是指示矩阵,在第 ( i , j ) (i,j) (i,j) 块位置为1,其他位置为0; A i j A_{ij} Aij 是对应的子块,可能具有稀疏或低秩特性。
基于块结构的矩阵乘法近似可以表述为:
C = A B = ∑ i = 1 m A ∑ j = 1 n A ∑ p = 1 m B ∑ q = 1 n B A i j B p q ⋅ ( E i j E p q ) C = AB = \sum_{i=1}^{m_A} \sum_{j=1}^{n_A} \sum_{p=1}^{m_B} \sum_{q=1}^{n_B} A_{ij} B_{pq} \cdot (E_{ij} E_{pq}) C=AB=i=1∑mAj=1∑nAp=1∑mBq=1∑nBAijBpq⋅(EijEpq)
其中 E i j E p q E_{ij} E_{pq} EijEpq 只有在 j = p j=p j=p 时才非零,这大大简化了计算。
对于具有块结构的矩阵,我们可以设计更复杂的近似方法。例如,基于块坐标下降(Block Coordinate Descent)的算法:
- 将矩阵 A A A 和 B B B 划分为块: A = [ A i j ] A = [A_{ij}] A=[Aij], B = [ B i j ] B = [B_{ij}] B=[Bij]
- 初始化 C = 0 C = 0 C=0
- 迭代更新过程:
- 选择块 ( i , j , p , q ) (i,j,p,q) (i,j,p,q) 使得 ∥ A i j B p q ∥ F \|A_{ij} B_{pq}\|_F ∥AijBpq∥F 最大
- 更新 C = C + A i j B p q ⋅ ( E i j E p q ) C = C + A_{ij} B_{pq} \cdot (E_{ij} E_{pq}) C=C+AijBpq⋅(EijEpq)
- 重复直到满足精度要求
这种算法的收敛性可以通过非凸优化理论证明。具体而言,对于合适的块选择策略,算法以线性收敛率收敛到全局最优解:
∥ C ( t ) − C ∥ F ≤ ( 1 − γ ) t ∥ C ( 0 ) − C ∥ F \|C^{(t)} - C\|_F \leq (1-\gamma)^t \|C^{(0)} - C\|_F ∥C(t)−C∥F≤(1−γ)t∥C(0)−C∥F
其中 γ \gamma γ 是与块结构相关的常数。
基于数据统计相关性的近似矩阵乘法算法分析
近似误差分析
对于基于统计相关性的近似方法,误差分析需要考虑数据的统计分布特性。设 C ~ \tilde{C} C~ 是 C = A B C = AB C=AB 的近似结果,我们关心误差 ∥ C − C ~ ∥ \|C - \tilde{C}\| ∥C−C~∥ 的期望和方差。
对于基于采样的方法,近似误差的方差可以表示为:
Var ( ∥ C − C ~ ∥ F 2 ) = 1 s ( ∑ i , j , k ( A i k B k j ) 2 p k − ∥ A B ∥ F 4 ) \text{Var}(\|C - \tilde{C}\|_F^2) = \frac{1}{s} \left( \sum_{i,j,k} \frac{(A_{ik}B_{kj})^2}{p_k} - \|AB\|_F^4 \right) Var(∥C−C~∥F2)=s1 i,j,k∑pk(AikBkj)2−∥AB∥F4
其中 s s s 是采样次数, p k p_k pk 是采样概率。当采样概率与数据统计相关性匹配时,方差最小。
从信息论角度,近似误差可以通过互信息损失来分析:
I ( C ; C ~ ) = H ( C ) − H ( C ∣ C ~ ) ≤ H ( C ) − H ( C − C ~ ) I(C; \tilde{C}) = H(C) - H(C|\tilde{C}) \leq H(C) - H(C - \tilde{C}) I(C;C~)=H(C)−H(C∣C~)≤H(C)−H(C−C~)
其中 H ( ⋅ ) H(\cdot) H(⋅) 表示熵, I ( ⋅ ; ⋅ ) I(\cdot;\cdot) I(⋅;⋅) 表示互信息。当 C − C ~ C - \tilde{C} C−C~ 近似服从高斯分布时,有:
H ( C − C ~ ) ≈ m n 2 log ( 2 π e σ 2 ) H(C - \tilde{C}) \approx \frac{mn}{2} \log(2\pi e \sigma^2) H(C−C~)≈2mnlog(2πeσ2)
其中 σ 2 = 1 m n E [ ∥ C − C ~ ∥ F 2 ] \sigma^2 = \frac{1}{mn} \mathbb{E}[\|C - \tilde{C}\|_F^2] σ2=mn1E[∥C−C~∥F2] 是平均方差。这表明,互信息损失与方差对数成正比,因此降低方差对保留信息至关重要。
对于基于低秩近似的方法,误差与矩阵的奇异值衰减速率密切相关。假设奇异值按幂律衰减,即 σ i ≈ i − α \sigma_i \approx i^{-\alpha} σi≈i−α,则近似误差为:
∥ C − C ~ ∥ F 2 ≈ ∑ i = k + 1 rank ( C ) σ i 2 ≈ ∫ k + 1 rank ( C ) x − 2 α d x ≈ ( k + 1 ) − 2 α + 1 \|C - \tilde{C}\|_F^2 \approx \sum_{i=k+1}^{\text{rank}(C)} \sigma_i^2 \approx \int_{k+1}^{\text{rank}(C)} x^{-2\alpha} dx \approx (k+1)^{-2\alpha+1} ∥C−C~∥F2≈i=k+1∑rank(C)σi2≈∫k+1rank(C)x−2αdx≈(k+1)−2α+1
这表明,当数据具有快速衰减的奇异值(大 α \alpha α 值)时,低秩近似方法特别有效。
更一般地,对于任意近似方法,可以证明存在理论下界:
inf C ~ sup A , B : ∥ A ∥ F = ∥ B ∥ F = 1 E [ ∥ A B − C ~ ∥ F 2 ] ≥ 1 s \inf_{\tilde{C}} \sup_{A,B: \|A\|_F=\|B\|_F=1} \mathbb{E}[\|AB - \tilde{C}\|_F^2] \geq \frac{1}{s} C~infA,B:∥A∥F=∥B∥F=1supE[∥AB−C~∥F2]≥s1
其中 s s s 是近似方法的计算复杂度与传统方法复杂度的比值。这一界限表明,计算复杂度的降低必然带来近似误差的增加,两者之间存在根本的权衡。
计算复杂度分析
不同的近似方法具有不同的计算复杂度特性,适用于不同的数据规模和分布场景。
基于采样的方法:时间复杂度为 O ( m ⋅ p ⋅ s ) O(m \cdot p \cdot s) O(m⋅p⋅s),其中 s s s 是采样次数。适合处理大规模稀疏数据,特别是当 s ≪ n s \ll n s≪n 时。
这类方法的空间复杂度为 O ( m + n + p + s ) O(m + n + p + s) O(m+n+p+s),主要用于存储输入矩阵和采样索引。对于分布式计算环境,通信复杂度为 O ( s ⋅ ( m + p ) ) O(s \cdot (m + p)) O(s⋅(m+p)),主要用于传输采样列/行。
基于低秩近似的方法:计算SVD的时间复杂度为 O ( min ( m , n ) ⋅ max ( m , n ) 2 ) O(\min(m,n) \cdot \max(m,n)^2) O(min(m,n)⋅max(m,n)2),但随机化SVD可降至 O ( m n log ( k ) ) O(mn\log(k)) O(mnlog(k))。低秩方法适合处理存在强相关性的数据。
空间复杂度为 O ( m ⋅ k + n ⋅ k + p ⋅ k ) O(m \cdot k + n \cdot k + p \cdot k) O(m⋅k+n⋅k+p⋅k),其中 k k k 是近似秩。通信复杂度为 O ( k ⋅ ( m + n + p ) ) O(k \cdot (m + n + p)) O(k⋅(m+n+p)),适合低维投影的传输。
基于聚类的方法:聚类过程的复杂度为 O ( t ⋅ n ⋅ m A ) O(t \cdot n \cdot m_A) O(t⋅n⋅mA),其中 t t t 是迭代次数。近似计算的复杂度为 O ( m ⋅ m A ⋅ m B ⋅ p ) O(m \cdot m_A \cdot m_B \cdot p) O(m⋅mA⋅mB⋅p)。适合处理具有明显聚类结构的数据。
空间复杂度为 O ( m ⋅ m A + n + p ⋅ m B ) O(m \cdot m_A + n + p \cdot m_B) O(m⋅mA+n+p⋅mB),主要用于存储聚类中心和索引。通信复杂度为 O ( m A ⋅ m B ⋅ ( m + p ) ) O(m_A \cdot m_B \cdot (m + p)) O(mA⋅mB⋅(m+p)),适合传输聚类表示。
基于S+L分解的方法:分解过程的复杂度为 O ( t ⋅ min ( m , n ) ⋅ max ( m , n ) 2 ) O(t \cdot \min(m,n) \cdot \max(m,n)^2) O(t⋅min(m,n)⋅max(m,n)2),其中 t t t 是迭代次数。计算复杂度取决于稀疏度和低秩度,适合同时具有稀疏和低秩特性的数据。
空间复杂度为 O ( n n z ( S A ) + n n z ( S B ) + m ⋅ r A + n ⋅ r A + n ⋅ r B + p ⋅ r B ) O(nnz(S_A) + nnz(S_B) + m \cdot r_A + n \cdot r_A + n \cdot r_B + p \cdot r_B) O(nnz(SA)+nnz(SB)+m⋅rA+n⋅rA+n⋅rB+p⋅rB),其中 n n z ( ⋅ ) nnz(\cdot) nnz(⋅) 表示非零元素数量, r A r_A rA 和 r B r_B rB 是低秩部分的秩。通信复杂度较为复杂,取决于具体的分解和计算策略。
实例分析:基于数据相关性的近似矩阵乘法
为了更具体地说明基于数据统计相关性的近似矩阵乘法,我们通过一个简化的例子进行演示。
假设我们有两个矩阵:
A = [ 3 2 0 0 2 3 0 0 0 0 4 1 0 0 2 4 ] , B = [ 2 0 1 1 0 2 0 3 1 0 2 1 ] A = [3200230000410024], \quad B = [201102031021] A= 3200230000420014 ,B= 210000321211
精确的矩阵乘积为:
C = A B = [ 8 0 7 7 0 8 0 14 8 0 14 6 ] C = AB = [80770801480146] C=AB= 87000014147886
观察矩阵 A A A 和 B B B,我们可以发现明显的块结构和相关性:
- A A A 的前两列和后两列形成两个相关组
- B B B 的第一行和第二行相关,第三行和第四行相关
基于聚类的近似计算
我们可以利用这种相关性结构,将 A A A 的列分为两组: I 1 = { 1 , 2 } \mathcal{I}_1 = \{1, 2\} I1={1,2} 和 I 2 = { 3 , 4 } \mathcal{I}_2 = \{3, 4\} I2={3,4},将 B B B 的行也分为两组: J 1 = { 1 , 2 } \mathcal{J}_1 = \{1, 2\} J1={1,2} 和 J 2 = { 3 , 4 } \mathcal{J}_2 = \{3, 4\} J2={3,4}。
计算每组的代表向量(平均值):
- A ^ : , 1 = [ 2.5 , 2.5 , 0 , 0 ] T \hat{A}_{:,1} = [2.5, 2.5, 0, 0]^T A^:,1=[2.5,2.5,0,0]T, A ^ : , 2 = [ 0 , 0 , 2.5 , 3 ] T \hat{A}_{:,2} = [0, 0, 2.5, 3]^T A^:,2=[0,0,2.5,3]T
- B ^ 1 , : = [ 1.5 , 0 , 1.5 ] \hat{B}_{1,:} = [1.5, 0, 1.5] B^1,:=[1.5,0,1.5], B ^ 2 , : = [ 0 , 2.5 , 1 ] \hat{B}_{2,:} = [0, 2.5, 1] B^2,:=[0,2.5,1]
基于聚类的近似乘法结果为:
C ~ = [ 7.5 0 7.5 7.5 0 7.5 0 12.5 7.5 0 15 7.5 ] \tilde{C} = [7.507.57.507.5012.57.50157.5] C~= 7.57.5000012.5157.57.57.57.5
与精确结果相比,近似误差为:
∥ C − C ~ ∥ F = ∑ i , j ( C i j − C ~ i j ) 2 ≈ 5.59 \|C - \tilde{C}\|_F = \sqrt{\sum_{i,j} (C_{ij} - \tilde{C}_{ij})^2} \approx 5.59 ∥C−C~∥F=i,j∑(Cij−C~ij)2≈5.59
相对误差为: ∥ C − C ~ ∥ F / ∥ C ∥ F ≈ 0.19 \|C - \tilde{C}\|_F / \|C\|_F \approx 0.19 ∥C−C~∥F/∥C∥F≈0.19,即19%。
基于低秩分解的近似计算
对矩阵 A A A 和 B B B 进行奇异值分解,保留最大的两个奇异值:
A ≈ U A Σ A V A T = [ 0.41 0.58 0.41 0.58 0.58 − 0.41 0.58 − 0.41 ] [ 5.83 0 0 5.83 ] [ 0.5 0.5 0 0 0 0 0.5 0.5 ] A \approx U_A \Sigma_A V_A^T = [0.410.580.410.580.58−0.410.58−0.41] [5.83005.83] [0.50.500000.50.5] A≈UAΣAVAT= 0.410.410.580.580.580.58−0.41−0.41 [5.83005.83][0.500.5000.500.5]
B ≈ U B Σ B V B T = [ 0.58 0 0.58 0 0 0.71 0 0.71 ] [ 3.46 0 0 3.61 ] [ 0.71 0 0.71 0 1 0 ] B \approx U_B \Sigma_B V_B^T = [0.5800.58000.7100.71] [3.46003.61] [0.7100.71010] B≈UBΣBVBT= 0.580.5800000.710.71 [3.46003.61][0.710010.710]
基于低秩近似的乘法结果为:
C ~ = U A Σ A ( V A T U B ) Σ B V B T ≈ [ 8.15 0 8.15 8.15 0 8.15 0 14.72 0 0 14.72 0 ] \tilde{C} = U_A \Sigma_A (V_A^T U_B) \Sigma_B V_B^T \approx [8.1508.158.1508.15014.720014.720] C~=UAΣA(VATUB)ΣBVBT≈ 8.158.15000014.7214.728.158.1500
与精确结果相比,近似误差为 ∥ C − C ~ ∥ F ≈ 10.32 \|C - \tilde{C}\|_F \approx 10.32 ∥C−C~∥F≈10.32,相对误差约为35%。在这个例子中,低秩近似的误差较大,主要是因为原始矩阵的相关结构更适合聚类方法。
基于相关性采样的近似计算
我们可以根据 A A A 的列范数和 B B B 的行范数设计采样概率:
p
1
=
∥
A
:
,
1
∥
⋅
∥
B
1
,
:
∥
∑
k
=
1
4
∥
A
:
,
k
∥
⋅
∥
B
k
,
:
∥
≈
0.22
p_1 = \frac{\|A_{:,1}\| \cdot \|B_{1,:}\|}{\sum_{k=1}^{4} \|A_{:,k}\| \cdot \|B_{k,:}\|} \approx 0.22
p1=∑k=14∥A:,k∥⋅∥Bk,:∥∥A:,1∥⋅∥B1,:∥≈0.22
p
2
=
∥
A
:
,
2
∥
⋅
∥
B
2
,
:
∥
∑
k
=
1
4
∥
A
:
,
k
∥
⋅
∥
B
k
,
:
∥
≈
0.18
p_2 = \frac{\|A_{:,2}\| \cdot \|B_{2,:}\|}{\sum_{k=1}^{4} \|A_{:,k}\| \cdot \|B_{k,:}\|} \approx 0.18
p2=∑k=14∥A:,k∥⋅∥Bk,:∥∥A:,2∥⋅∥B2,:∥≈0.18
p
3
=
∥
A
:
,
3
∥
⋅
∥
B
3
,
:
∥
∑
k
=
1
4
∥
A
:
,
k
∥
⋅
∥
B
k
,
:
∥
≈
0.35
p_3 = \frac{\|A_{:,3}\| \cdot \|B_{3,:}\|}{\sum_{k=1}^{4} \|A_{:,k}\| \cdot \|B_{k,:}\|} \approx 0.35
p3=∑k=14∥A:,k∥⋅∥Bk,:∥∥A:,3∥⋅∥B3,:∥≈0.35
p
4
=
∥
A
:
,
4
∥
⋅
∥
B
4
,
:
∥
∑
k
=
1
4
∥
A
:
,
k
∥
⋅
∥
B
k
,
:
∥
≈
0.25
p_4 = \frac{\|A_{:,4}\| \cdot \|B_{4,:}\|}{\sum_{k=1}^{4} \|A_{:,k}\| \cdot \|B_{k,:}\|} \approx 0.25
p4=∑k=14∥A:,k∥⋅∥Bk,:∥∥A:,4∥⋅∥B4,:∥≈0.25
假设我们进行4次采样,根据概率选择索引 k 1 = 1 k_1 = 1 k1=1, k 2 = 3 k_2 = 3 k2=3, k 3 = 3 k_3 = 3 k3=3, k 4 = 4 k_4 = 4 k4=4,得到估计:
C ~ i j = 1 4 ( A i 1 B 1 j p 1 + A i 3 B 3 j p 3 + A i 3 B 3 j p 3 + A i 4 B 4 j p 4 ) \tilde{C}_{ij} = \frac{1}{4} \left( \frac{A_{i1}B_{1j}}{p_1} + \frac{A_{i3}B_{3j}}{p_3} + \frac{A_{i3}B_{3j}}{p_3} + \frac{A_{i4}B_{4j}}{p_4} \right) C~ij=41(p1Ai1B1j+p3Ai3B3j+p3Ai3B3j+p4Ai4B4j)
计算得到:
C ~ ≈ [ 6.82 0 5.18 4.55 0 7.45 0 17.14 5.71 0 11.43 5.71 ] \tilde{C} \approx [6.8205.184.5507.45017.145.71011.435.71] C~≈ 6.824.55000017.1411.435.187.455.715.71
与精确结果相比,近似误差为 ∥ C − C ~ ∥ F ≈ 7.42 \|C - \tilde{C}\|_F \approx 7.42 ∥C−C~∥F≈7.42,相对误差约为25%。
通过这个简单的例子,我们可以看到不同的基于数据相关性的近似方法各有优劣。在实际应用中,应根据数据的具体统计特性选择最适合的方法,或将多种方法组合使用,以取得更好的性能。